9-1. Determine the vertical displacement of joint A. Each bar is made of steel and has a cross-sectional area of $600 \mathrm{~mm}^{2}$. Take $E=200 \mathrm{GPa}$. Use the method of virtual work. respectively.

Member	$n(\mathrm{kN})$	$N(\mathrm{kN})$	$L(\mathrm{~m})$	$n N L\left(\mathrm{kN}^{2} \cdot \mathrm{~m}\right)$
$A B$	1.25	6.25	2.50	19.531
$A D$	-0.75	-3.75	3	8.437
$B D$	-1.25	-6.25	2.50	19.531
$B C$	1.50	7.50	1.50	16.875
			Σ	64.375

$1 \mathrm{kN} \cdot \Delta_{A_{v}}=\sum \frac{n N L}{A E}=\frac{64.375 \mathrm{kN}^{2} \cdot \mathrm{~m}}{A E}$

$$
\begin{aligned}
\Delta_{A_{v}} & =\frac{64.375 \mathrm{kN} \cdot \mathrm{~m}}{A E} \\
& =\frac{64.375\left(10^{3}\right) \mathrm{N} \cdot \mathrm{~m}}{\left[0.6\left(10^{-3}\right) \mathrm{m}^{2}\right]\left[200\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right]} \\
& =0.53646\left(10^{-3}\right) \mathrm{m} \\
& =0.536 \mathrm{~mm} \downarrow
\end{aligned}
$$

Virtual Forces n
(a)

(b)

9-2. Solve Prob. 9-1 using Castigliano's theorem.

Member	$N(k N)$	$\frac{\partial N}{\partial P}$	$N(P=5 \mathrm{kN})$	$L(\mathrm{~m})$	$N\left(\frac{\partial N}{\partial P}\right) L(\mathrm{kN} \cdot \mathrm{m})$
$A B$	$1.25 P$	1.25	6.25	2.5	19.531
$A D$	$-0.750 P$	-0.75	-3.75	3	8.437
$B D$	$-1.25 P$	-1.25	-6.25	2.5	19.531
$B C$	$1.50 P$	1.50	7.50	1.5	16.875

$$
\begin{aligned}
\Delta_{A_{v}} & =\sum N\left(\frac{\partial N}{\partial P}\right) \frac{L}{A E} \\
& =\frac{64.375 \mathrm{kN} \cdot \mathrm{~m}}{A E} \\
& =\frac{64 \cdot 375\left(10^{3}\right) \mathrm{N} \cdot \mathrm{~m}}{\left[0.6\left(10^{-3}\right) \mathrm{m}^{2}\right]\left[200\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right]} \\
& =0.53646\left(10^{-3}\right) \mathrm{m} \\
& =0.536 \mathrm{~mm} \downarrow
\end{aligned}
$$

Ans.

*9-3. Determine the vertical displacement of joint B. For each member $A=400 \mathrm{~mm}^{2}, E=200 \mathrm{GPa}$. Use the method of virtual work.

Member	n	N	L	$n N L$
$A F$	0	0	1.5	0
$A E$	-0.8333	-37.5	2.5	78.125
$A B$	0.6667	30.0	2.0	40.00
$E F$	0	0	2.0	0
$E B$	0.50	22.5	1.5	16.875
$E D$	-0.6667	-30.0	2.0	40.00
$B C$	0	0	2.0	0
$B D$	0.8333	37.5	2.5	78.125
$C D$	-0.5	-22.5	1.5	16.875
				$\Sigma=270$

$$
\begin{aligned}
1 \cdot \Delta_{B_{v}} & =\sum \frac{n N L}{A E} \\
\Delta_{B_{v}} & =\frac{270\left(10^{3}\right)}{400\left(10^{-6}\right)(200)\left(10^{9}\right)}=3.375\left(10^{-3}\right) \mathrm{m}=3.38 \mathrm{~mm} \downarrow
\end{aligned}
$$

Ans.

Ans.

*9-4. Solve Prob. 9-3 using Castigliano's theorem.

Member	N	$\frac{\partial N}{\partial P}$	$N(P=45)$	L	$N\left(\frac{\partial N}{\partial P}\right) L$
$A F$	0	0	0	1.5	0
$A E$	$-0.8333 P$	-0.8333	-37.5	2.5	78.125
$A B$	$0.6667 P$	0.6667	30.0	2.0	40.00
$B E$	$0.5 P$	0.5	22.5	1.5	16.875
$B D$	$0.8333 P$	0.8333	37.5	2.5	78.125
$B C$	0	0	0	2.0	0
$C D$	$-0.5 P$	-0.5	-22.5	1.5	16.875
$D E$	$0.6667 P$	-0.6667	-30.0	2.0	40.00
$E F$	0	0	0	2.0	0
					$\Sigma=270$

$\delta_{B_{v}}=\sum N\left(\frac{\partial N}{\partial P}\right) \frac{L}{A E}=\frac{270}{A E}$
$=\frac{270\left(10^{3}\right)}{400\left(10^{-6}\right)(200)\left(10^{9}\right)}=3.375\left(10^{-3}\right) \mathrm{m}=3.38 \mathrm{~mm}$
Ans.

9-5. Determine the vertical displacement of joint E. For each member $A=400 \mathrm{~mm}^{2}, E=200 \mathrm{GPa}$. Use the method of virtual work.

Member	n	N	L	$n N L$
$A F$	0	0	1.5	0
$A E$	-0.8333	-37.5	2.5	78.125
$A B$	0.6667	30.0	2.0	40.00
$E F$	0	0	2.0	0
$E B$	0.50	22.5	1.5	-16.875
$E D$	-0.6667	30.0	2.0	40.00
$B C$	0	0	2.0	0
$B D$	0.8333	37.5	2.5	78.125
$C D$	-0.5	-22.5	1.5	16.875
				$\Sigma=236.25$

$1 \cdot \Delta E_{v}=\sum \frac{n N L}{A E}$
$\Delta E_{v}=\frac{236.25\left(10^{3}\right)}{400\left(10^{-6}\right)(200)\left(10^{9}\right)}=2.95\left(10^{-3}\right) \mathrm{m}=2.95 \mathrm{~mm} \downarrow$
Ans.

9-6. Solve Prob. 9-5 using Castigliano's theorem.

| Member | N | $\frac{\partial N}{\partial P}$ | | $N(P=45)$ | L |
| :--- | ---: | ---: | ---: | ---: | ---: |$\quad N\left(\frac{\partial N}{\partial P}\right) L$

$\Delta_{E_{v}}=\sum N \frac{\partial N}{\partial P} \quad \frac{L}{A E}=\frac{236.25}{A E}$

$$
=\frac{236.25\left(10^{3}\right)}{400\left(10^{-6}\right)(200)\left(10^{9}\right)}=2.95\left(10^{-3}\right) \mathrm{m}=2.95 \mathrm{~mm} \quad \downarrow
$$

Ans.

9-7. Determine the vertical displacement of joint D. Use the method of virtual work. $A E$ is constant. Assume the members are pin connected at their ends.

The virtual and real forces in each member are shown in Fig. a and b, respectively

Member	$n(k N)$	$N(k N)$	$L(\mathrm{~m})$	$n N L\left(\mathrm{kN}^{2} \cdot \mathrm{~m}\right)$
$A B$	0.6667	10.0	4	26.667
$B C$	0.6667	10.0	4	26.667
$A D$	-0.8333	-12.5	5	52.083
$B D$	0	15.0	3	0
$C D$	-0.8333	-12.5	5	52.083
$C E$	0.500	27.5	3	41.25
$D E$	0	0	4	0
			Σ	198.75

$1 \mathrm{kN} \cdot \Delta_{D_{v}}=\sum \frac{n N L}{A E}=\frac{198.75 \mathrm{kN}^{2} \cdot \mathrm{~m}}{A E}$

$$
\Delta_{D_{v}}=\frac{198.75 \mathrm{kN} \cdot \mathrm{~m}}{A E}=\frac{199 \mathrm{kN} \cdot \mathrm{~m}}{A E} \downarrow
$$

Ans.

9-7. Continued

*9-8. Solve Prob. 9-7 using Castigliano's theorem.

Member	$N(\mathrm{kN})$	$\frac{\partial N}{\partial P}$	$N(P=0) \mathrm{kN}$	$L(\mathrm{~m})$	$N\left(\frac{\partial N}{\partial P}\right) L(\mathrm{kN} \cdot \mathrm{m})$
$A B$	$0.6667 P+10.0$	0.6667	10.0	4	26.667
$B C$	$0.6667 P+10.0$	0.6667	10.0	4	26.667
$A D$	$-(0.8333 P+12.5)$	-0.8333	-12.5	5	52.083
$B D$	15.0	0	15.0	3	0
$C D$	$-(0.8333 P+12.5)$	-0.8333	-12.5	5	52.083
$C E$	$0.5 P+27.5$	0.5	27.5	3	41.25
$D E$	0	0	0	4	0
				Σ	198.75

$$
\begin{aligned}
\Delta_{D_{v}} & =\sum N\left(\frac{\partial N}{\partial P}\right) \frac{L}{A E} \\
& =\frac{198.75 \mathrm{kN} \cdot \mathrm{~m}}{A E}=\frac{199 \mathrm{kN} \cdot \mathrm{~m}}{A E} \downarrow
\end{aligned}
$$

Ans.

9-9. Determine the vertical displacement of the truss at joint F. Assume all members are pin connected at their end points. Take $A=0.5 \mathrm{in}^{2}$ and $E=29\left(10^{3}\right)$ ksi for each member. Use the method of virtual work.

$$
\begin{aligned}
\Delta_{F_{v}}= & \sum \frac{n N L}{A E}=\frac{L}{A E}[(-1.00)(-600)(3)+(1.414)(848.5)(4.243)+(-1.00)(0)(3) \\
& +(-1.00)(-1100)(3)+(1.414)(1555.6)(4.243)+(-2.00)(-1700)(3) \\
& +(-1.00)(-1400)(3)+(-1.00)(-1100)(3)+(-2.00)(-1700)(3)](12) \\
= & \frac{47425.0(12)}{0.5(29)\left(10^{6}\right)}=0.0392 \mathrm{in.} \downarrow
\end{aligned}
$$

9-10. Solve Prob. 9-9 using Castigliano's theorem.

$$
\begin{aligned}
\Delta_{F_{v}}=\sum & N\left(\frac{\partial N}{\partial P}\right) \frac{L}{A E}=\frac{1}{A E}[-(P+600)](-1)(3)+(1.414 P+848.5)(1.414)(4.243) \\
& +(-P)(-1)(3)+(-(P+1100))(-1)(3) \\
& +(1.414 P+1555.6)(1.414)(4.243)+(-(2 P+1700))(-2)(3) \\
& +(-(P+1400)(-1)(3)+(-(P+1100))(-1)(3) \\
& +(-(2 P+1700))(-2)(3)](12)=\frac{(55.97 P+47.425 .0)(12)}{\left(0.5\left(29(10)^{6}\right)\right.}
\end{aligned}
$$

Set $P=0$ and evaluate

$$
\Delta_{F_{v}}=0.0392 \text { in. } \downarrow
$$

Ans.

9-11. Determine the vertical displacement of joint A. The cross-sectional area of each member is indicated in the figure. Assume the members are pin connected at their end points. $E=29(10)^{3}$ ksi. Use the method of virtual work.

The virtual force and real force in each member are shown in Fig. a and b, respectively.

Member	$n(k)$	$N(k)$	$L(\mathrm{ft})$	$n N L\left(\mathrm{k}^{2} \cdot \mathrm{ft}\right)$
$A B$	-1.00	-7.00	4	28
$B C$	-1.00	-7.00	4	28
$A D$	$\sqrt{2}$	$7 \sqrt{2}$	$4 \sqrt{2}$	$56 \sqrt{2}$
$B D$	-2.00	-14.00	4	112
$C D$	$\sqrt{2}$	$7 \sqrt{2}$	$4 \sqrt{2}$	$56 \sqrt{2}$
$C E$	-1.00	-4.00	4	16
$D E$	0	0	4	0

$$
1 k \cdot \Delta_{A_{v}}=\sum \frac{n N L}{A E}
$$

$$
1 \mathrm{k} \cdot \Delta_{A_{v}}=\frac{(29+28+112+16) \mathrm{k}^{2} \cdot \mathrm{ft}}{\left(3 \mathrm{in}^{2}\right)\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]}+\frac{(56 \sqrt{2}+56 \sqrt{2}) \mathrm{k}^{2} \cdot \mathrm{ft}}{\left(2 \mathrm{in}^{2}\right)\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]}
$$

$$
\Delta_{A_{v}}=0.004846 \mathrm{ft}\left(\frac{12 \mathrm{in}}{1 \mathrm{ft}}\right)=0.0582 \mathrm{in} . \downarrow
$$

*9-12. Solve Prob. 9-11 using Castigliano's theorem.

Member	$N(k)$	$\frac{\partial N}{\partial P}$	$N(P=7 k)$	$L(\mathrm{ft})$	$N\left(\frac{\partial N}{\partial P}\right) L(\mathrm{k} \cdot \mathrm{ft})$
$A B$	$-P$	-1	-7	4	28
$B C$	$-P$	-1	-7	4	28
$A D$	$\sqrt{2} P$	$\sqrt{2}$	$7 \sqrt{2}$	$4 \sqrt{2}$	$56 \sqrt{2}$
$B D$	$-2 P$	-2	-14	4	112
$C D$	$\sqrt{2} P$	$\sqrt{2}$	$7 \sqrt{2}$	$4 \sqrt{2}$	$56 \sqrt{2}$
$C E$	$-(P-3)$	-1	-4	4	16
$D E$	0	0	0	4	0

$$
\begin{aligned}
\Delta_{A_{v}} & =\sum N\left(\frac{\delta N}{\delta P}\right) \frac{L}{A E} \\
& =\frac{(28+28+112+16) \mathrm{k} \cdot \mathrm{ft}}{\left(3 \mathrm{in}^{2}\right)\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{m}^{2}\right]}+\frac{56 \sqrt{2}+56 \sqrt{2} \mathrm{k}^{2} \cdot \mathrm{ft}}{\left(2 \mathrm{in}^{2}\right)\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]} \\
& =0.004846 \mathrm{ft}\left(\frac{12 \mathrm{in}}{1 \mathrm{ft}}\right)=0.0582 \mathrm{in} \downarrow
\end{aligned}
$$

Ans.

9-13. Determine the horizontal displacement of joint D.
Assume the members are pin connected at their end points. $A E$ is constant. Use the method of virtual work.

The virtual force and real force in each member are shown in Fig. a and b, respectively.

Member	$n(k)$	$N(k)$	$L(\mathrm{ft})$	$n N L\left(\mathrm{k}^{2} \cdot \mathrm{ft}\right)$
$A C$	1.50	5.25	6	47.25
$B C$	-1.25	-6.25	10	78.125
$B D$	-0.75	-1.50	12	13.50
$C D$	1.25	2.50	10	31.25
			Σ	170.125

$$
\begin{aligned}
1 \mathrm{k} \cdot \Delta_{D_{h}} & =\sum \frac{n N L}{A E} \\
1 \mathrm{k} \cdot \Delta_{D_{h}} & =\frac{170.125 \mathrm{k}^{2} \cdot \mathrm{ft}}{A E} \\
\Delta_{D_{h}} & =\frac{170 \mathrm{k} \cdot \mathrm{ft}}{A E} \rightarrow
\end{aligned}
$$

Virtual Forces n
(a)

Ans.

9-14. Solve Prob. 9-13 using Castigliano's theorem.

Member	$N(k)$	$\frac{\partial N}{\partial P}$	$N(P=2 \mathrm{k})$	$L(\mathrm{ft})$	$N\left(\frac{\partial N}{\partial P}\right) L(\mathrm{k} \cdot \mathrm{ft})$
$A C$	$1.50 P+2.25$	1.50	5.25	6	47.25
$B C$	$-(1.25 P+3.75)$	-1.25	-6.25	10	78.125
$B D$	$-0.750 P$	-0.750	-1.50	12	13.5
$C D$	$1.25 P$	1.25	2.50	10	31.25

$$
\begin{aligned}
\Delta_{D_{h}} & =\sum N\left(\frac{\delta N}{\delta P}\right) \frac{L}{A E} \\
& =\frac{170.125 \mathrm{k} \cdot \mathrm{ft}}{A E} \\
& =\frac{170 \mathrm{k} \cdot \mathrm{ft}}{A E} \rightarrow
\end{aligned}
$$

Ans.

9-15. Determine the vertical displacement of joint C of the truss. Each member has a cross-sectional area of $A=300 \mathrm{~mm}^{2}$. $E=200 \mathrm{GPa}$. Use the method of virtual work.

The virtual and real forces in each member are shown in Fig. a and b respectively.

Member	$n(k N)$	$N(k N)$	$L(\mathrm{~m})$	$n N L\left(\mathrm{kN}^{2} \cdot \mathrm{~m}\right)$
$A B$	0.6667	6.667	4	17.78
$D E$	0.6667	6.667	4	17.78
$B C$	1.333	9.333	4	49.78
$C D$	1.333	9.333	4	49.78
$A H$	-0.8333	-8.333	5	34.72
$E F$	-0.8333	-8.333	5	34.72
$B H$	0.5	5	3	7.50
$D F$	0.5	5	3	7.50
$B G$	-0.8333	-3.333	5	13.89
$D G$	-0.8333	-3.333	5	13.89
$G H$	-0.6667	-6.6667	4	17.78
$F G$	-0.6667	-6.6667	4	17.78
$C G$	1	4	3	12.00
				$\Sigma=294.89$

$1 \mathrm{kN} \cdot \Delta_{C_{v}}=\sum \frac{n N L}{A E}=\frac{294.89 \mathrm{kN}^{2} \cdot \mathrm{~m}}{A E}$

$$
\begin{aligned}
\Delta_{C_{v}} & =\frac{294.89 \mathrm{kN} \cdot \mathrm{~m}}{A E} \\
& =\frac{294.89\left(10^{3}\right) \mathrm{N} \cdot \mathrm{~m}}{\left[0.3\left(10^{-3}\right) \mathrm{m}^{2}\right]\left[200\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right]} \\
& =0.004914 \mathrm{~m}=4.91 \mathrm{~mm} \quad \downarrow
\end{aligned}
$$

(a)

Ans.

*9-16. Solve Prob. 9-15 using Castigliano's theorem.

Member	$N(k N)$	$\frac{\partial N}{\partial P}$	$N(P=4 \mathrm{kN})$	$L(\mathrm{~m})$	$N\left(\frac{\partial N}{\partial P}\right) L(\mathrm{k} \cdot \mathrm{m})$
$A B$	$0.6667 P+4$	0.6667	6.667	4	17.78
$D E$	$0.6667 P+4$	0.6667	6.667	4	17.78
$B C$	$1.333 P+4$	1.333	9.333	4	49.78
$C D$	$1.333 P+4$	1.333	9.333	4	49.78
$A H$	$-(0.8333 P+5)$	-0.8333	-8.333	5	34.72
$E F$	$-(0.8333 P+5)$	-0.8333	-8.333	5	34.72
$B H$	$0.5 P+3$	0.5	5	3	7.50
$D F$	$0.5 P+3$	0.5	5	3	7.50
$B G$	$-0.8333 P$	-0.8333	-3.333	5	13.89
$D G$	$-0.8333 P$	-0.8333	-3.333	5	13.89
$G H$	$-(0.6667 P+4)$	-0.6667	-6.667	4	17.78
$F G$	$-(0.6667 P+4)$	-0.6667	-6.667	4	17.78
$C G$	P	1	4	3	12.00
				Σ	294.89

$$
\begin{aligned}
\Delta_{C_{v}} & =\sum N\left(\frac{\partial N}{\partial P}\right) \frac{L}{A E}=\frac{294.89 \mathrm{kN} \cdot \mathrm{~m}}{A E} \\
& =\frac{294.89\left(10^{3}\right) \mathrm{N} \cdot \mathrm{~m}}{\left[0.3\left(10^{-3}\right) \mathrm{m}^{2}\right]\left[200\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right]} \\
& =0.004914 \mathrm{~m} \\
& =4.91 \mathrm{~mm} \quad \downarrow
\end{aligned}
$$

Ans.

9-17. Determine the vertical displacement of joint A. Assume the members are pin connected at their end points. Take $A=2$ in 2 and $E=29\left(10^{3}\right)$ for each member. Use the method of virtual work.

$\Delta_{A_{v}}=\sum \frac{n N L}{A E}=\frac{1}{A E}[2(-2.00)(-2.00)(8)+(2.236)(2.236)(8.944)+(2.236)(2.795)(8.944)]$

$$
=\frac{164.62(12)}{(2)(29)\left(10^{3}\right)}=0.0341 \mathrm{in} . \downarrow
$$

Ans.

9-18. Solve Prob. 9-17 using Castigliano's theorem.

$$
\begin{gather*}
\Delta_{A_{v}}=\sum N\left(\frac{\partial N}{\partial P}\right) \frac{L}{A E}=\frac{1}{A E}[-2 P(-2)(8)+(2.236 P)(2.236)(8.944) \\
+(-2 P)(-2)(8)+(2.236 P+0.5590)(2.236)(8.944)](12) \tag{12}
\end{gather*}
$$

Set $P=1$ and evaluate
$\Delta_{A_{v}}=\frac{164.62(12)}{(2)(29)\left(10^{3}\right)}=0.0341$ in. \downarrow

Ans.

9-19. Determine the vertical displacement of joint A if members $A B$ and $B C$ experience a temperature increase of $\Delta T=200^{\circ} \mathrm{F}$. Take $A=2 \mathrm{in}^{2}$ and $E=29\left(10^{3}\right)$ ksi. Also, $\alpha=6.60\left(10^{-6}\right) /{ }^{\circ} \mathrm{F}$.

$\Delta_{A_{v}}=\sum n \alpha \Delta T L=(-2)(6.60)\left(10^{-6}\right)(200)(8)(12)+(-2)(6.60)\left(10^{-6}\right)(200)(8)(12)$

$$
=-0.507 \mathrm{in} .=0.507 \mathrm{in} . \uparrow
$$

Ans.

*9-20. Determine the vertical displacement of joint A if member $A E$ is fabricated 0.5 in . too short.

$\Delta_{A_{v}}=\sum n \Delta L=(2.236)(-0.5)$

$$
=-1.12 \text { in }=1.12 \text { in. } \uparrow
$$

Ans.

9-21. Determine the displacement of point C and the slope at point B. $E I$ is constant. Use the principle of virtual work.

Real Moment function $\boldsymbol{M}(\boldsymbol{x})$: As shown on figure (a).
Virtual Moment Functions $\boldsymbol{m}(\boldsymbol{x})$ and $\mathbf{m}_{\theta}(\mathbf{x})$: As shown on figure (b) and (c).
Virtual Work Equation: For the displacement at point C,

$$
\begin{aligned}
1 \cdot \Delta & =\int_{0}^{L} \frac{m M}{E I} d x \\
1 \cdot \Delta_{C} & =2\left[\frac{1}{E I} \int_{0}^{\frac{L}{1}}\left(\frac{x_{1}}{2}\right)\left(\frac{P}{2} x_{1}\right) d x_{1}\right] \\
\Delta_{C} & =\frac{P L^{3}}{48 E I} \quad \downarrow
\end{aligned}
$$

For the slope at B,

$$
\begin{aligned}
1 \cdot \theta & =\int_{0}^{L} \frac{m_{\theta} M}{E I} d x \\
1 \cdot \theta_{B} & =\frac{1}{E I}\left[\int_{0}^{\frac{L}{1}}\left(\frac{x_{1}}{L}\right)\left(\frac{P}{2} x_{1}\right) d x_{1}+\int_{0}^{\frac{L}{2}}\left(1-\frac{x_{2}}{L}\right)\left(\frac{P}{2} x_{2}\right) d x_{2}\right] \\
\theta_{B} & =\frac{P L^{2}}{16 E I}
\end{aligned}
$$

Ans.

9-22. Solve Prob. 9-21 using Castigliano's theorem.

Internal Moment Function $\boldsymbol{M}(\boldsymbol{x})$: The internal moment function in terms of the load \mathbf{P}^{\prime} and couple moment \mathbf{M}^{\prime} and externally applied load are shown on figures (a) and (b), respectively.

Castigliano's Second Theorem: The displacement at C can be determined with $\frac{\partial M(x)}{\partial P^{\prime}}==\frac{x}{2}$ and set $P^{\prime}=P$.
$\Delta=\int_{0}^{L} M\left(\frac{\partial M}{\partial P^{\prime}}\right) \frac{d x}{E I}$
$\Delta_{C}=2\left[\frac{1}{E I} \int_{0}^{\frac{L}{1}}\left(\frac{P}{2} x\right)\left(\frac{x}{2}\right) d x\right]$
$=\frac{P L^{3}}{48 E I} \downarrow$
Ans.
To determine the slope at B, with $\frac{\partial M\left(x_{1}\right)}{\partial M^{\prime}}=\frac{x_{1}}{L}, \frac{\partial M\left(x_{2}\right)}{\partial M^{\prime}}=1-\frac{x_{2}}{L}$ and setting $M^{\prime}=0$.

$$
\begin{aligned}
\theta & =\int_{0}^{L} M\left(\frac{\partial M}{\partial M^{\prime}}\right) \frac{d x}{E I} \\
\theta_{B} & =\frac{1}{E I} \int_{0}^{\frac{L}{1}}\left(\frac{P}{2} x_{1}\right)\left(\frac{x_{1}}{L}\right) d x_{1}+\frac{1}{E I} \int_{0}^{\frac{L}{2}}\left(\frac{P}{2} x_{2}\right)\left(1-\frac{x_{2}}{L}\right) d x_{2} \\
& =\frac{P L^{2}}{16 E I}
\end{aligned}
$$

Ans.

9-23. Determine the displacement at point $C . E I$ is constant. Use the method of virtual work.

$1 \cdot \Delta_{C}=\int_{0}^{L} \frac{m M}{E I} d x$

$$
\begin{aligned}
\Delta_{C} & =\frac{1}{E I}\left[\int_{o}^{a}\left(x_{1}\right)\left(P x_{1}\right) d x_{1}+\int_{0}^{a}\left(x_{2}\right)\left(P x_{2}\right) d x_{2}\right] \\
& =\frac{2 P a^{3}}{3 E I} \downarrow
\end{aligned}
$$

*9-24. Solve Prob. 9-23 using Castigliano's theorem.

$\frac{\partial M_{1}}{\partial P^{\prime}}=x_{1} \quad \frac{\partial M_{2}}{\partial P^{\prime}}=x_{2}$
Set $P=P^{\prime}$
$M_{1}=P x_{1} \quad M_{2}=P x_{2}$

$\Delta_{C}=\int_{0}^{L} M\left(\frac{\partial M}{\partial P^{\prime}}\right) d x=\frac{1}{E I}\left[\int_{0}^{a}\left(P x_{1}\right)\left(x_{1}\right) d x_{1}+\int_{0}^{a}\left(P x_{2}\right)\left(x_{2}\right) d x_{2}\right]$

$$
=\frac{2 P a^{3}}{3 E I}
$$

Ans.

9-25. Determine the slope at point $C . E I$ is constant. Use the method of virtual work.

$1 \cdot \theta_{C}=\int_{0}^{L} \frac{m_{\theta} M d x}{E I}$
$\theta_{C}=\int_{0}^{a} \frac{\left(x_{1} / a\right) P x_{1} d x_{1}}{E I}+\int_{0}^{a} \frac{(1) P x_{2} d x_{2}}{E I}$
$=\frac{P a^{2}}{3 E I}+\frac{P a^{2}}{2 E I}=\frac{5 P a^{2}}{6 E I} \nabla$

Ans.

9-26. Solve Prob. 9-25 using Castigliano's theorem.

Set $M^{\prime}=0$
$\theta_{C}=\int_{0}^{L} M\left(\frac{\delta M}{\delta M^{\prime}}\right) \frac{d x}{E I}$
$=\int_{0}^{a} \frac{\left(P x_{1}\right)\left(\frac{1}{a} x_{1}\right) d x_{1}}{E I}+\int_{0}^{a} \frac{\left(P x_{2}\right)(1) d x_{2}}{E I}$
$=\frac{P a^{2}}{3 E I}+\frac{P a^{2}}{2 E I}=\frac{5 P a^{2}}{6 E I} \nabla$
Ans.

9-27. Determine the slope at point $A . E I$ is constant. Use the method of virtual work.

$1 \cdot \theta_{A}=\int_{0}^{L} \frac{m_{\theta} M}{E I} d x$
$\theta_{A}=\frac{1}{E I}\left[\int_{0}^{a}\left(1-\frac{x_{1}}{a}\right)\left(P x_{1}\right) d x_{1}+\int_{0}^{a}(0)\left(P x_{2}\right) d x_{2}\right]=\frac{P a^{2}}{6 E I}$

Ans.

*9-28. Solve Prob. 9-27 using Castigliano's theorem.

$$
\frac{\partial M_{1}}{\partial M^{\prime}}=1-\frac{x_{1}}{a} \quad \frac{\partial M_{2}}{\partial M^{\prime}}=0
$$

Set $M^{\prime}=0$

$$
\begin{aligned}
M_{1} & =-P x_{1} \quad M_{2}=P x_{2} \\
\theta_{A} & =\int_{0}^{L} M\left(\frac{\partial M}{\partial M^{\prime}}\right) \frac{d x}{E I}=\frac{1}{E I}\left[\int_{0}^{a}\left(-P x_{1}\right)\left(1-\frac{x_{1}}{a}\right) d x_{1}+\int_{0}^{a}\left(P x_{2}\right)(0) d x_{2}\right] \\
& =\frac{-P a^{2}}{6 E I} \\
& =\frac{P a^{2}}{6 E I}
\end{aligned}
$$

Ans.

9-29. Determine the slope and displacement at point C.
Use the method of virtual work. $E=29\left(10^{3}\right) \mathrm{ksi}$, $I=800 \mathrm{in}^{4}$.

Referring to the virtual moment functions indicated in Fig. a and b and the real moment function in Fig. c, we have

$$
\begin{aligned}
1 \mathrm{k} \cdot \mathrm{ft} \cdot \theta_{c}=\int_{0}^{L} \frac{m_{\theta} M}{E I} d x & =\int_{0}^{6 \mathrm{ft}} \frac{(-1)(-12)}{E I} d x_{1}+\int_{0}^{6 \mathrm{ft}} \frac{(-1)\left[-\left(6 x_{2}+12\right)\right]}{E I} d x_{2} \\
& =\frac{252 \mathrm{k}^{2} \cdot \mathrm{ft}^{3}}{E I}
\end{aligned}
$$

$$
\theta_{c}=\frac{252 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}=\frac{252\left(12^{2}\right) \mathrm{k} \cdot \mathrm{in}^{2}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(800 \mathrm{in}^{4}\right)}=0.00156 \mathrm{rad}
$$

Ans.
and

$$
\begin{aligned}
1 \mathrm{k} \cdot \Delta_{C}=\int_{0}^{L} \frac{m M}{E I} d x & =\int_{0}^{6 \mathrm{ft}} \frac{\left(-x_{1}\right)(-12)}{E I} d x_{1}+\int_{0}^{6 \mathrm{ft}} \frac{\left(\left[-\left(x_{2}+6\right)\right]\left[-\left(6 x_{2}+12\right)\right]\right.}{E I} d x_{2} \\
& =\frac{1944 \mathrm{k}^{2} \cdot \mathrm{ft}^{3}}{E I}
\end{aligned}
$$

$\Delta_{C}=\frac{1944 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}=\frac{1944\left(12^{3}\right) \mathrm{k} \cdot \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(800 \mathrm{in}^{4}\right)}=0.415 \mathrm{in} \quad \downarrow$
Ans.

(C)

9-30. Solve Prob. 9-29 using Castigliano's theorem.

For the slope, the moment functions are shown in Fig. a. Here, $\frac{\partial M_{1}}{\partial M^{\prime}}=-1$ and $\frac{\partial M_{2}}{\partial M^{\prime}}=-1$. Also, set $M^{\prime}=12 \mathrm{kft}$, then $M_{1}=-12 \mathrm{k} \cdot \mathrm{ft}$ and $M_{2}=-\left(6 x_{2}+12\right) \mathrm{k} \cdot \mathrm{ft}$. Thus,
$\theta_{c}=\int_{0}^{L} M\left(\frac{\partial M}{\partial M^{\prime}}\right) \frac{d x}{E I}=\int_{0}^{6 \mathrm{ft}} \frac{(-12)(-1)}{E I} d x_{2}+\int_{0}^{6 \mathrm{ft}} \frac{-\left(6 x_{2}+12(-1)\right.}{E I} d x_{2}$
$\theta_{c}=\frac{252 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}=\frac{252\left(12^{2}\right) \mathrm{k} \cdot \mathrm{in}^{2}}{\left[29\left(10^{3} \mathrm{k} / \mathrm{in}^{2}\right]\left(800 \mathrm{in}^{4}\right)\right.}=0.00156 \mathrm{rad}$
Ans.

For the displacement, the moment functions are shown in Fig. b. Here, $\frac{\partial M_{1}}{\partial P}=-x_{1}$ and $\frac{\partial M_{2}}{\partial P}=-\left(x_{2}+6\right)$. Also set, $P=0$, then $M_{1}=-12 \mathrm{k} \cdot \mathrm{ft}$ and $M_{2}=-\left(6 x_{2}+12\right) \mathrm{k} \cdot \mathrm{ft}$. Thus,
$\Delta_{C}=\int_{0}^{L}\left(\frac{\partial M}{\partial P}\right) \frac{d x}{E I}=\int_{0}^{6 \mathrm{ft}} \frac{(-12)\left(-x_{1}\right)}{E I} d x_{1}+\int_{0}^{6 \mathrm{ft}} \frac{-\left(6 x_{2}+12\right)\left[-\left(x_{2}+6\right)\right]}{E I} d x_{2}$

$$
=\frac{1944 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}
$$

$$
=\frac{1944\left(12^{3}\right) \mathrm{k} \cdot \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(800 \mathrm{in}^{4}\right)}=0.145 \text { in } \downarrow
$$

Ans.

(a)

(b)

9-31. Determine the displacement and slope at point C of the cantilever beam. The moment of inertia of each segment is indicated in the figure. Take $E=29\left(10^{3}\right) \mathrm{ksi}$. Use the principle of virtual work.

Referring to the virtual moment functions indicated in Fig. a and b and the real moment function in Fig. c, we have

$$
\begin{aligned}
& 1 \mathrm{k} \cdot \mathrm{ft} \cdot \theta_{\mathrm{c}}=\int_{0}^{L} \frac{m_{0} M}{E I} d x=\int_{0}^{3 \mathrm{ft}} \frac{(-1)(-50)}{E I_{B C}} d x_{1}+\int_{0}^{6 \mathrm{ft}} \frac{(-1)(-50)}{E I_{A B}} d x_{2} \\
& 1 \mathrm{k} \cdot \mathrm{ft} \cdot \theta_{\mathrm{c}}=\frac{150 \mathrm{k}^{2} \cdot \mathrm{ft}^{3}}{E I_{B C}}+\frac{300 \mathrm{k}^{2} \cdot \mathrm{ft}^{3}}{E I_{A B}} \\
& \theta_{c}=\frac{150 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I_{B C}}+\frac{300 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I_{A B}} \\
& =\frac{150\left(12^{2}\right) \mathrm{k} \cdot \mathrm{in}^{2}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(200 \mathrm{in}^{4}\right)}+\frac{300\left(12^{2}\right) \mathrm{k} \cdot \mathrm{in}^{2}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(500 \mathrm{in}^{4}\right)} \\
& =0.00670 \mathrm{rad}
\end{aligned}
$$

And

$$
\begin{aligned}
& 1 \mathrm{k} \cdot \Delta_{C}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{3 \mathrm{ft}} \frac{-x_{1}(-50)}{E I_{B C}} d x_{1}+\int_{0}^{6 \mathrm{ft}} \frac{-\left(x_{2}+3\right)(-50)}{E I_{A B}} d x_{2} \\
& 1 \mathrm{k} \cdot \Delta_{C}=\frac{225 \mathrm{k}^{2} \cdot \mathrm{ft}^{3}}{E I_{B C}}+\frac{1800 \mathrm{k}^{2} \cdot \mathrm{ft}^{3}}{E I_{A B}} \\
& \Delta_{C}=\frac{225 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I_{B C}}+\frac{1800 \mathrm{k}^{2} \cdot \mathrm{ft}^{3}}{E I_{A B}} \\
&=\frac{225\left(12^{3}\right) \mathrm{k} \cdot \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(200 \mathrm{in}^{4}\right)}+\frac{1800\left(12^{3}\right) \mathrm{k} \cdot \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(500 \mathrm{in}^{4}\right)}=0.282 \mathrm{in} \downarrow
\end{aligned}
$$

(a)

Ans.

(b)

Ans.

*9-32. Solve Prob. 9-31 using Castigliano's theorem.

For the slope, the moment functions are shown in Fig. a. Here, $\frac{\partial M_{1}}{\partial M^{\prime}}=\frac{\partial M_{2}}{\partial M^{\prime}}=-1$.
Also, set $M^{\prime}=50 \mathrm{k} \cdot \mathrm{ft}$, then $M_{1}=M_{2}=-50 \mathrm{k} \cdot \mathrm{ft}$.
Thus,

$$
\begin{aligned}
\theta_{C} & =\int_{0}^{L} M\left(\frac{\partial M}{\partial M^{\prime}}\right) \frac{d x}{E I}=\int_{0}^{3 \mathrm{ft}} \frac{-50(-1) d x}{E I_{B C}}+\int_{0}^{6 \mathrm{ft}} \frac{-50(-1) d x}{E I_{A B}} \\
& =\frac{150 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I_{B C}}+\frac{300 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I_{A B}} \\
& =\frac{150\left(12^{2}\right) \mathrm{k} \cdot \mathrm{in}^{2}}{\left[29\left(10^{3} \mathrm{k} / \mathrm{in}^{2}\right)\right]\left(200 \mathrm{in}^{4}\right)}+\frac{300\left(12^{2}\right) \mathrm{k} \cdot \mathrm{in}^{2}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(500 \mathrm{in}^{4}\right)} \\
& =0.00670
\end{aligned}
$$

Ans.

For the displacement, the moment functions are shown in Fig, b. Here, $\frac{\partial M_{1}}{\partial P}=-x_{1}$ and $\frac{\partial M_{2}}{\partial P}=-\left(x_{2}+3\right)$. Also, set $P=0$, then $M_{1}=M_{2}=-50 \mathrm{k} \cdot \mathrm{ft}$. Thus,
$\Delta_{C}=\int_{0}^{L} M\left(\frac{\partial M}{\partial P}\right) \frac{d x}{E I}=\int_{0}^{3 \mathrm{ft}} \frac{(-50)(-x) d x}{E I_{B C}}+\int_{0}^{6 \mathrm{ft}} \frac{(-50)\left[-\left(x_{2}+3\right)\right] d x}{E I_{A B}}$
$=\frac{225 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I_{B C}}+\frac{1800 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I_{A B}}$
$=\frac{225\left(12^{3}\right) \mathrm{k} \cdot \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(200 \mathrm{in}^{4}\right)}+\frac{1800\left(12^{3}\right) \mathrm{k} \cdot \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(500 \mathrm{in}^{4}\right)}$
$=0.282$ in \downarrow
Ans.

(a)

(b)

9-33. Determine the slope and displacement at point B. $E I$ is constant. Use the method of virtual work.

Referring to the virtual moment function indicated in Fig. a and b, and real moment function in Fig. c, we have

$$
\begin{aligned}
1 \mathrm{~N} \cdot \mathrm{~m} \cdot \theta_{B} & =\int_{0}^{L} \frac{m_{0} M}{E I} d x=\int_{0}^{3 \mathrm{~m}} \frac{(-1)\left[-\left(150 x^{2}+400 x\right)\right]}{E I} d x \\
1 \mathrm{~N} \cdot \mathrm{~m} \cdot \theta_{B} & =\frac{3150 \mathrm{~N}^{2} \cdot \mathrm{~m}^{3}}{E I} \\
\theta_{B} & =\frac{3150 \mathrm{~N} \cdot \mathrm{~m}^{2}}{E I}
\end{aligned}
$$

Ans.

And
$1 \mathrm{~N} \cdot \Delta_{B}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{3 \mathrm{~m}} \frac{(-x)\left[-\left(150 x^{2}+400 x\right)\right]}{E I}$

$$
1 \mathrm{~N} \cdot \Delta_{B}=\frac{6637.5 \mathrm{~N}^{2} \cdot \mathrm{~m}^{3}}{E I}
$$

$$
\Delta_{B}=\frac{6637.5 \mathrm{~N} \cdot \mathrm{~m}^{3}}{E I} \downarrow
$$

Ans.

(a)

(b)

(C)

9-34. Solve Prob. 9-33 using Castigliano's theorem.

For the slope, the moment function is shown in Fig. a. Here, $\frac{\partial M}{\partial M^{\prime}}=-1$.
Also, set $M^{\prime}=0$, then $M=-\left(150 x^{2}+400 x\right) \mathrm{N} \cdot \mathrm{m}$. Thus,

$$
\begin{aligned}
\theta_{B} & =\int_{0}^{L} M\left(\frac{\partial M}{\partial M^{\prime}}\right) \frac{d x}{E I}=\int_{0}^{3 \mathrm{~m}} \frac{-\left(150 x^{2}+400 x\right)(-1)}{E I} d x \\
& =\frac{3150 \mathrm{~N} \cdot \mathrm{~m}^{2}}{E I} \nabla
\end{aligned}
$$

Ans.

For the displacement, the moment function is shown in Fig. b. Here, $\frac{\partial M}{\partial P}=-x$. Also, set $P=400 \mathrm{~N}$, then $M=\left(400 x+150 x^{2}\right) \mathrm{N} \cdot \mathrm{m}$. Thus,

$$
\begin{aligned}
\Delta_{B} & =\int_{0}^{L} M\left(\frac{\partial M}{\partial P}\right) \frac{d x}{E I}=\int_{0}^{3 \mathrm{~m}} \frac{-\left(400 x+150 x^{2}\right)(-x)}{E I} d x \\
& =\frac{6637.5 \mathrm{~N} \cdot \mathrm{~m}^{3}}{E I} \downarrow
\end{aligned}
$$

Ans.

(a)

(b)

9-35. Determine the slope and displacement at point B. Assume the support at A is a pin and C is a roller. Take $E=29\left(10^{3}\right) \mathrm{ksi}, I=300 \mathrm{in}^{4}$. Use the method of virtual work.

Referring to the virtual moment functions shown in Fig. a and b and the real moment function shown in Fig. c,

$$
\begin{aligned}
1 \mathrm{k} \cdot \mathrm{ft} \cdot \theta_{B}=\int_{0}^{L} \frac{m_{\theta} M}{E I} d x=\int_{0}^{10 \mathrm{ft}} & \frac{\left(0.06667 x_{1}\right)\left(30 x_{1}-2 x_{1}^{2}\right) d x_{1}}{E I} \\
& +\int_{0}^{5 \mathrm{ft}} \frac{\left(-0.06667 x_{2}\right)\left(30 x_{2}-2 x_{2}^{2}\right)}{E I} d x_{2}
\end{aligned}
$$

$1 \mathrm{k} \cdot \mathrm{ft} \cdot \theta_{B}=\frac{270.83 \mathrm{k}^{2} \cdot \mathrm{ft}^{3}}{E I}$
$\theta_{B}=\frac{270.83 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}=\frac{270.83\left(12^{2}\right) \mathrm{k} \cdot \mathrm{in}^{2}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(300 \mathrm{in}^{4}\right)}=0.00448 \mathrm{rad} \angle \mathrm{Ans}$.
And
$1 \mathrm{k} \cdot \Delta_{B}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{10 \mathrm{ft}} \frac{\left(0.3333 x_{1}\right)\left(30 x_{1}-2 x_{1}^{2}\right) d x_{1}}{E I}$
$+\int_{0}^{5 \mathrm{ft}} \frac{\left(0.6667 x_{2}\right)\left(30 x_{2}-2 x_{2}^{2}\right) d x_{2}}{E I}$
$1 \mathrm{k} \cdot \Delta_{B}=\frac{2291.67 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}$
$\Delta_{B}=\frac{2291.67 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}=\frac{2291.67\left(12^{3}\right) \mathrm{k} \cdot \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(300 \mathrm{in}^{4}\right)}=0 \cdot 455 \mathrm{in} \downarrow$

(a)

(b)

(C)
*9-36. Solve Prob. 9-35 using Castigliano's theorem.

For the slope, the moment functions are shown in Fig. a. Here,
$\frac{\partial M_{1}}{\partial M^{\prime}}=0.06667 x_{1}$ and $\frac{\partial M_{2}}{\partial M^{\prime}}=0.06667 x_{2}$. Also, set $M^{\prime}=0$, then
$M_{1}=\left(30 x_{1}-2 x_{1}^{2}\right) \mathrm{k} \cdot \mathrm{ft}$ and $M_{2}=\left(30 x_{2}-2 x_{2}^{2}\right) \mathrm{k} \cdot \mathrm{ft}$. Thus,
$\theta_{B}=\int_{0}^{L} M\left(\frac{\partial M}{\partial M^{\prime}}\right) \frac{d x}{E I}=\int_{0}^{10 \mathrm{ft}} \frac{\left(30 x_{1}-2 x_{1}^{2}\right)\left(0.06667 x_{1}\right) d x_{1}}{E I}$

$$
+\int_{0}^{5 \mathrm{ft}} \frac{\left(30 x_{2}-2 x_{2}^{2}\right)\left(0.06667 x_{2}\right) d x_{2}}{E I}
$$

$$
=\frac{270.83 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}=\frac{270.83\left(12^{2}\right) \mathrm{k} \cdot \mathrm{in}^{2}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(300 \mathrm{in}^{4}\right)}=0.00448 \mathrm{rad} \quad \measuredangle
$$

For the displacement, the moment fractions are shown in Fig. b. Here,
$\frac{\partial M_{1}}{\partial p}=0.3333 x_{1}$ and $\frac{\partial M_{2}}{\partial P}=0.6667 x_{2}$. Also, set $P=0$, then
$M_{1}=\left(30 x_{1}-2 x_{1}^{2}\right) \mathrm{k} \cdot \mathrm{ft}$ and $M_{2}=\left(30 x_{2}-2 x_{2}^{2}\right) \mathrm{k} \cdot \mathrm{ft}$. Thus
$\Delta_{B}=\int_{0}^{L} M\left(\frac{\partial M}{\partial P}\right) \frac{d x}{E I}=\int_{0}^{10 \mathrm{ft}} \frac{30 x_{1}-2 x_{1}^{2}\left(0.3333 x_{1}\right) d x_{1}}{E I}$

$$
+\int_{0}^{5 \mathrm{ft}} \frac{\left(30 x_{2}-2 x_{2}^{2}\right)\left(0.6667 x_{2}\right) d x_{2}}{E I}
$$

$$
=\frac{2291.67 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}=\frac{2291.67\left(12^{3}\right) \mathrm{k} \cdot \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(300 \mathrm{in}^{4}\right)}=0.455 \text { in } \downarrow
$$

(a)

Ans.

Ans.

(b)

9-37. Determine the slope and displacement at point B. Assume the support at A is a pin and C is a roller. Account for the additional strain energy due to shear. Take $E=29\left(10^{3}\right) \mathrm{ksi}, I=300 \mathrm{in}^{4}, G=12\left(10^{3}\right) \mathrm{ksi}$, and assume $A B$ has a cross-sectional area of $A=7.50 \mathrm{in}^{2}$. Use the method of virtual work.

The virtual shear and moment functions are shown in Fig. a and b and the real shear and moment functions are shown in Fig. c.

$$
\begin{aligned}
1 \mathrm{k} \cdot \mathrm{ft} \cdot \theta_{B}= & \int_{0}^{L} \frac{m_{\theta} M}{E I} d x+\int_{0}^{L} \mathrm{k}\left(\frac{\nu V}{G A}\right) d x \\
= & \int_{0}^{10 \mathrm{ft}} \frac{0.06667 x_{1}\left(30 x_{1}-2 x_{1}^{2}\right)}{E I} d x_{1}+\int_{0}^{10 \mathrm{ft}} 1\left[\frac{0.06667\left(30-4 x_{1}\right)}{G A}\right] d x_{1} \\
& +\int_{0}^{5 \mathrm{ft}} \frac{\left(-0.06667 x_{2}\left(30 x_{2}-2 x_{2}^{2}\right)\right.}{E I} d x_{2}+\int_{0}^{5 \mathrm{ft}} 1\left[\frac{0.06667\left(4 x_{2}-30\right)}{G A}\right] d x_{2} \\
= & \frac{270.83 \mathrm{k}^{2} \cdot \mathrm{ft}^{3}}{E I}+0
\end{aligned}
$$

$\theta_{B}=\frac{270.83 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}=\frac{270.83\left(12^{2}\right) \mathrm{k} \cdot \mathrm{in}^{2}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\left(300 \mathrm{in}^{4}\right)\right]}=0.00448 \mathrm{rad} \quad \measuredangle$
Ans.

And

$$
\begin{aligned}
1 \mathrm{k} \cdot \Delta_{B}= & \int_{0}^{L} \frac{m M}{E I} d x+\int_{0}^{L} \mathrm{k}\left(\frac{\nu V}{G A}\right) d x \\
= & \int_{0}^{10 \mathrm{ft}} \frac{\left(0.3333 x_{1}\right)\left(30 x_{1}-2 x_{1}^{2}\right)}{E I} d x_{1}+\int_{0}^{10 \mathrm{ft}} 1\left[\frac{0.3333\left(30-4 x_{1}\right)}{G A}\right] d x_{1} \\
& +\int_{0}^{5 \mathrm{ft}\left(0.6667 x_{2}\right)\left(30 x_{2}-2 x_{2}^{2}\right)} \underset{E I}{ } d x_{2}+\int_{0}^{5 \mathrm{ft}} 1\left[\frac{(-0.6667)\left(4 x_{2}-30\right)}{G A}\right] d x_{2} \\
= & \frac{2291.67 \mathrm{k}^{2} \cdot \mathrm{ft}^{3}}{E I}+\frac{100 \mathrm{k}^{2} \cdot \mathrm{ft}}{G A} \\
\Delta_{B}= & \frac{2291.67 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}+\frac{100 \mathrm{k} \cdot \mathrm{ft}}{G A} \\
= & \frac{2291.67\left(12^{3}\right) \mathrm{k} \cdot \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(300 \mathrm{in}^{4}\right)}+\frac{100(12) \mathrm{k} \cdot \mathrm{in}}{\left[12\left(10^{3}\right) \mathrm{k} / \mathrm{in}^{2}\right]\left(7.50 \mathrm{in}^{2}\right)} \\
= & 0.469 \mathrm{in} \downarrow
\end{aligned} \quad \text { Ans. }
$$

9-37. Continued

(c)

(b)

9-38. Determine the displacement of point C. Use the method of virtual work. $E I$ is constant.

Referring to the virtual and real moment functions shown in Fig. a and b, respectively,
$1 \cdot \Delta_{C}=\int_{0}^{L} \frac{m M}{E I} d x=2 \int_{0}^{\frac{L}{2}} \frac{\left(\frac{1}{2}\right)\left(\frac{w_{0} L}{4} x-\frac{w_{0}}{3 L} x^{3}\right)}{E I} d x$
$\Delta_{C}=\frac{w_{0} L^{4}}{120 E I} \downarrow$
Ans.

9-39. Solve Prob. 9-38 using Castigliano's theorem.

The moment function is shown in Fig. a. Here $\frac{\partial M}{\partial P}=\frac{1}{2} x$. Also, set $P=0$, then $M=\frac{w_{0} L}{4} x-\frac{w_{0}}{3 L} x^{3}$. Thus

$$
\begin{aligned}
\Delta_{C} & =\int_{0}^{L} M\left(\frac{\partial M}{\partial P}\right) \frac{d x}{E I}=2 \int_{0}^{\frac{L}{2}} \frac{\left(\frac{w_{0} L}{4} x-\frac{w_{0}}{3 L} x^{3}\right)\left(\frac{1}{2} x\right)}{E I} d x \\
& =\frac{w_{0} L^{4}}{120 E I} \downarrow
\end{aligned}
$$

Ans.

*9-40. Determine the slope and displacement at point A. Assume C is pinned. Use the principle of virtual work. $E I$ is constant.

Referring to the virtual moment functions shown in Fig. a and b and the real moment functions in Fig. c, we have

$$
\begin{aligned}
& 1 \mathrm{kN} \cdot \mathrm{~m} \cdot \theta_{A}=\int_{0}^{L} \frac{m_{\theta} M}{E I} d x=\int_{0}^{3 \mathrm{~m}} \frac{(-1)\left(-0.3333 x_{1}^{3}\right)}{E I} d x_{1} \\
&+\int_{0}^{3 \mathrm{~m}} \frac{\left(0.3333 x_{2}\right)\left(6 x_{2}-3 x_{2}^{2}\right)}{E I} d x_{2}
\end{aligned}
$$

$1 \mathrm{kN} \cdot \mathrm{m} \cdot \theta_{A}=\frac{9 \mathrm{kN}^{2} \cdot \mathrm{~m}^{3}}{E I}$

$$
\theta_{A}=\frac{9 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I}
$$

Ans.

And
$1 \mathrm{kN} \cdot \Delta_{A}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{3 \mathrm{~m}} \frac{\left(-x_{1}\right)\left(-0.3333 x_{1}^{3}\right)}{E I} d x_{1}+\int_{0}^{3 \mathrm{~m}} \frac{\left(-x_{2}\right)\left(6 x_{2}-3 x_{2}^{2}\right)}{E I} d x_{2}$
$1 \mathrm{kN} \cdot \Delta_{A}=\frac{22.95 \mathrm{kN}^{2} \cdot \mathrm{~m}^{3}}{E I}$

$$
\Delta_{A}=\frac{22.95 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I} \downarrow
$$

(a)

Ans.

9-41. Solve Prob. 9-40 using Castigliano's theorem.

The slope, the moment functions are shown in Fig. a. Here, $\frac{\partial M_{1}}{\partial M^{\prime}}=-1$
and $\frac{\partial M_{2}}{\partial M^{\prime}}=-0.3333 x_{2}$. Also, set $M^{\prime}=0$, then $M_{1}=-0.3333 x_{1}^{3}$ and $M_{2}=6 x_{2}-3 x_{2}^{2}$. Thus
$\theta_{A}=\int_{0}^{L} M\left(\frac{\partial M}{\partial M^{\prime}}\right) \frac{d x}{E I}=\int_{0}^{3 \mathrm{~m}} \frac{\left(-0.3333 x_{1}^{3}\right)(-1)}{E I} d x_{1}+\int_{0}^{3 \mathrm{~m}} \frac{\left(6 x_{2}-3 x_{2}^{2}\right)\left(0.3333 x_{2}\right)}{E I} d x_{2}$

$$
\theta_{A}=\frac{9 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I}
$$

Ans.
The displacement, the moment functions are shown in Fig. b. Here, $\frac{\partial M_{1}}{\partial P}=-x_{1}$ and $\frac{\partial M_{2}}{\partial P}=-x_{2}$. Also, set $P=0$, then $M_{1}=-0.3333 x_{1}^{3}$ and $M_{2}=6 x_{2}-3 x_{2}^{2}$. Thus
$\Delta_{A}=\int_{0}^{L} M\left(\frac{\partial M}{\partial P}\right) \frac{d x}{E I}=\int_{0}^{3 \mathrm{~m}} \frac{\left(-0.3333 x_{1}^{3}\right)\left(-x_{1}\right)}{E I} d x_{1}+\int_{0}^{3 \mathrm{~m}} \frac{\left(6 x_{2}-3 x_{2}^{2}\right)\left(-x_{2}\right)}{E I} d x_{2}$

$$
=\frac{22.95 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I} \downarrow
$$

Ans.

9-42. Determine the displacement at point D. Use the principle of virtual work. $E I$ is constant.

Referring to the virtual and real moment functions shown in Fig. a and b, respectively,

$$
\begin{aligned}
1 \mathrm{k} \cdot \Delta_{D}=\int_{0}^{L} \frac{m M}{E I} d x & =\int_{0}^{4 \mathrm{ft}} \frac{\left(-0.5 x_{1}\right)\left(-12 x_{1}\right)}{E I} d x_{1}+\int_{0}^{4 \mathrm{ft}} \frac{\left[-0.5\left(x_{2}+4\right)\right]\left[-\left(20 x_{2}+48\right)\right]}{E I} d x_{2} \\
& +2 \int_{0}^{4 \mathrm{ft}} \frac{\left(-0.5 x_{3}\right)\left(12 x_{3}-1.50 x_{3}^{2}\right)}{E I} d x_{3} \\
1 \mathrm{k} \cdot \Delta_{D} & =\frac{1397.33 \mathrm{k}^{2} \cdot \mathrm{ft}^{3}}{E I} \\
\Delta_{D} & =\frac{1397 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \downarrow
\end{aligned}
$$

9-43. Determine the displacement at point D. Use Castigliano's theorem. $E I$ is constant.

The moment functions are shown in Fig. a. Here, $\frac{\partial M_{1}}{\partial P}=-0.5 x$,
$\frac{\partial M_{2}}{\partial P}=-\left(0.5 x_{2}+2\right)$ and $\frac{\partial M_{3}}{\partial P}=0.5 x_{3}$. Also set $P=0$,
$M_{1}=-12 x_{1}, M_{2}=-\left(20 x_{2}+48\right)$ and $M_{3}=12 x_{3}-1.50 x_{3}^{2}$. Thus,
$\Delta_{D}=\int_{0}^{L} M\left(\frac{\partial M}{\partial P}\right) \frac{d x}{E I}=\int_{0}^{4 \mathrm{ft}} \frac{\left(-12 x_{1}\right)\left(-0.5 x_{1}\right)}{E I} d x_{1}$
$+\int_{0}^{4 \mathrm{ft}} \frac{\left[-\left(20 x_{2}+48\right)\right]\left[-\left(0.5 x_{2}+2\right)\right]}{E I} d x_{2}$
$+2 \int_{0}^{4 \mathrm{ft}} \frac{\left(12 x_{3}-1.50 x_{3}^{2}\right)\left(0.5 x_{3}\right)}{E I} d x_{3}$
$=\frac{1397.33 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}=\frac{1397 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \downarrow$
Ans.

(a)
*9-44. Use the method of virtual work and determine the vertical deflection at the rocker support $D . E I$ is constant.

$\left(\Delta_{D}\right)_{x}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{L o} \frac{(x)(600 x) d x}{E I}+\int_{0}^{L} \frac{(10)(750 x) d x}{E I}+0$

$$
=\frac{440 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \downarrow
$$

Ans.

9-45. Solve Prob. 9-44 using Castigliano's theorem.

Set $P=0$,

$$
\begin{aligned}
\left(\Delta_{D}\right)_{v}=\int_{0}^{L} \frac{M}{E I}\left(\frac{\partial M}{\partial P}\right) d x & =\int_{0}^{10} \frac{(600 x)(x) d x}{E I}+\int_{0}^{1} \frac{(750 x)(10) d x}{E I}+0 \\
& =\frac{440 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \downarrow
\end{aligned}
$$

9-46. The L-shaped frame is made from two segments, each of length L and flexural stiffness $E I$. If it is subjected to the uniform distributed load, determine the horizontal displacement of the end C. Use the method of virtual work.

$$
\begin{aligned}
1 \cdot \Delta_{C_{h}} & =\int_{0}^{L} \frac{m M}{E I} d x \\
\Delta_{C_{h}} & =\frac{l}{E I}\left[\int_{0}^{L}\left(1 x_{1}\right)\left(\frac{w x_{1}^{2}}{2}\right) d x_{1}+\int_{0}^{L}(1 L)\left(\frac{w L^{2}}{2}\right) d x_{2}\right] \\
& =\frac{5 w L^{4}}{8 E I}
\end{aligned}
$$

Ans.

9-47. The L-shaped frame is made from two segments, each of length L and flexural stiffness $E I$. If it is subjected to the uniform distributed load, determine the vertical displacement of point B. Use the method of virtual work.

$$
\begin{aligned}
l \cdot \Delta_{B_{v}} & =\int_{0}^{L} \frac{m M}{E I} d x \\
\Delta_{B_{v}} & =\frac{l}{E I}\left[\int_{0}^{L}(0)\left(\frac{w x_{1}^{2}}{2}\right) d x_{1}+\int_{0}^{L}\left(L-x_{2}\right)\left(\frac{w L^{2}}{2}\right) d x_{2}\right] \\
& =\frac{w L^{4}}{4 E I}
\end{aligned}
$$

*9-48. Solve Prob. 9-47 using Castigliano's theorem.

P does not influence moment within vertical segment.
$M=P x-\frac{w L^{2}}{2}$
$\frac{\partial M}{\partial P}=x$
Set $P=0$
$\Delta_{B}=\int_{0}^{L} M\left(\frac{\partial M}{\partial P}\right) \frac{d x}{E I}=\int_{0}^{L}\left(-\frac{w L^{2}}{2}\right)(x) \frac{d x}{E I}=\frac{w L^{4}}{4 E I}$

Ans.

9-49. Determine the horizontal displacement of point C. $E I$ is constant. Use the method of virtual work.

respectively,
$1 \mathrm{k} \cdot \Delta_{C_{h}}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{8 \mathrm{ft}} \frac{\left(-x_{1}\right)\left(-0.1 x_{1}^{2}\right)}{E I} d x_{1}+\int_{0}^{10 \mathrm{ft}} \frac{(-8)\left[-\left(0.2 x_{2}^{2}+6.40\right)\right]}{E I} d x_{2}$
$1 \mathrm{k} \cdot \Delta_{C_{h}}=\frac{1147.73 \mathrm{k}^{2} \cdot \mathrm{ft}^{3}}{E I}$

$$
\Delta_{C_{h}}=\frac{1148 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \leftarrow
$$

Ans.

(a)

9-49. Continued

9-50. Solve Prob. 9-49 using Castigliano's theorem.

set $P=0$, then $M_{1}=-0.1 x_{1}^{2}$ and $M_{2}=-\left(0.2 x_{2}^{2}+6.40\right)$.
Thus,
$\Delta_{C_{h}}=\int_{0}^{L} M\left(\frac{\partial M}{\partial P}\right) \frac{d x}{E I}=\int_{0}^{8 \mathrm{ft}} \frac{\left(-0.1 x_{1}^{2}\right)\left(-x_{1}\right)}{E I} d x_{1}+\int_{0}^{10 \mathrm{ft}} \frac{\left[-\left(0.2 x_{2}^{2}+6.40\right)\right](-8)}{E I} d x_{2}$

$$
=\frac{1147.73 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}=\frac{1148 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \leftarrow
$$

9-51. Determine the vertical deflection at C. The crosssectional area and moment of inertia of each segment is shown in the figure. Take $E=200 \mathrm{GPa}$. Assume A is a fixed support. Use the method of virtual work.
$\left(\Delta_{C}\right)_{v}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{3} \frac{(3-x)(50)\left(10^{3}\right) d x}{E I_{A B}}+0$
$=\frac{\left[150\left(10^{3}\right) x-25\left(10^{3}\right) x^{2}\right]_{0}^{3}}{E I_{A B}}$
$=\frac{225\left(10^{3}\right)}{200\left(10^{9}\right)(400)\left(10^{6}\right)\left(10^{-12}\right)}$
$=2.81 \mathrm{~mm} \downarrow$

Ans.

*9-52. Solve Prob. 9-51, including the effect of shear and axial strain energy.

See Prob. 9-51 for the effect of bending.
$U=\sum \frac{n N L}{A E}+\int_{0}^{L} K\left(\frac{\nu V}{G A}\right) d x$
Note that each term is zero since n and N or v and V do not occur simultaneously in each member. Hence,

$$
\left(\Delta_{C}\right)_{v}=2.81 \mathrm{~mm} \downarrow
$$

Ans

9-53. Solve Prob. 9-51 using Castigliano's theorem.

$$
\begin{aligned}
\left(\Delta_{C}\right)_{v} & =\int_{0}^{L} \frac{M}{E I}\left(\frac{\partial M}{\partial P}\right) d x=\int_{0}^{3} \frac{(50)\left(10^{3}\right)(3-x) d x}{E I_{A B}}+0 \\
& =\frac{\left[150\left(10^{3}\right) x-25\left(10^{3}\right) x^{2}\right]_{0}^{3}}{E I_{A B}} \\
& =\frac{225\left(10^{3}\right)}{200\left(10^{9}\right)(400)\left(10^{6}\right)\left(10^{-12}\right)} \\
& =2.81 \mathrm{~mm} \downarrow
\end{aligned}
$$

Ans.

9-54. Determine the slope at A. Take $E=29\left(10^{3}\right) \mathrm{ksi}$. The moment of inertia of each segment of the frame is indicated in the figure. Assume D is a pin support. Use the method of virtual work.

$$
\begin{aligned}
\theta_{A} & =\int_{0}^{L} \frac{m_{\theta} M}{E I} d x=\int_{0}^{5} \frac{(1-0.1 x)(6 x) d x}{E I_{B C}}+\int_{0}^{5} \frac{(0.1 x)(6 x) d x}{E I_{B C}}+0+0 \\
& =\frac{(75-25+25)}{E I_{B C}}=\frac{75(144)}{29\left(10^{3}\right)(900)}=0.414\left(10^{-3}\right) \mathrm{rad}
\end{aligned}
$$

9-55. Solve Prob. 9-54 using Castigliano's theorem.

Set $M^{\prime}=0$,

$$
\begin{aligned}
\theta_{A}=\int_{0}^{L} \frac{M}{E I}\left(\frac{\partial M}{\partial M^{\prime}}\right) d x & =\int_{0}^{5} \frac{(6 x)(1-0.1 x) d x}{E I_{B C}}+\int_{0}^{5} \frac{(6 x)(0.1 x) d x}{E I_{B C}}+0+0 \\
& =\frac{(75-25+25)}{E I_{\partial C}}=\frac{75(144)}{29\left(10^{3}\right)(900)}=0.414\left(10^{-3}\right) \mathrm{rad} \text { Ans. }
\end{aligned}
$$

*9-56. Use the method of virtual work and determine the horizontal deflection at C. The cross-sectional area of each member is indicated in the figure. Assume the members are pin connected at their end points. $E=29\left(10^{3}\right) \mathrm{ksi}$.

$\left(\Delta_{c}\right)_{h}=\sum \frac{n N L}{A E}=\frac{1.33(4.667)(4)(12)}{2(29)\left(10^{3}\right)}+\frac{(1)(5)(3)(12)}{(1)(29)\left(10^{3}\right)}+0+\frac{(-8.33)(-1.667)(5)(12)}{(1)(29)\left(10^{3}\right)}$

$$
=0.0401 \mathrm{in} . \rightarrow
$$

Ans.

9-57. Solve Prob. 9-56 using Castigliano's theorem.

Member	N force	$\frac{\partial N}{\partial P}$
$A B$	$1.33 P+4.667$	1.33
$B C$	$P+5$	1
$B D$	$-1.667 P-8.33$	-1.667
$C D$	0	0

Set $P=0$,
$\left(\Delta_{c}\right)_{h}=N\left(\frac{\partial N}{\partial P}\right) \frac{L}{A E}=\frac{(4.667)(1.33)(4)(12)}{2(29)\left(10^{3}\right)}+\frac{(5)(1)(3)(12)}{(1)(29)\left(10^{3}\right)}+0$

$$
+\frac{(-8.33)(-1.667)(5)(12)}{(1)(29)\left(10^{3}\right)}
$$

$$
=0.0401 \mathrm{in} . \rightarrow
$$

9-58. Use the method of virtual work and determine the horizontal deflection at $C . E$ is constant. There is a pin at A, and assume C is a roller and B is a fixed joint.

$\left(\Delta_{c}\right)_{h}=\int_{0}^{L} \frac{m M}{E I} d x=\int_{0}^{4} \frac{(0.541 x)\left(1849.17 x-200 x^{2}\right) d x}{E I}+\int_{0}^{10} \frac{(0.325 x)(389.5 x) d x}{E I}$
$=\frac{1}{E I}\left[\left.\left(333.47 x^{3}-27.05 x^{4}\right)\right|_{0} ^{6}+\left.\left(42.15 x^{3}\right)\right|_{0} ^{10}\right]$
$=\frac{79.1 \mathrm{k} . \mathrm{ft}^{3}}{E I} \rightarrow$
Ans.

9-59. Solve Prob. 9-58 using Castigliano's theorem.

Set $P=0$

$\left(\Delta_{c}\right)_{h}=\int_{0}^{L} \frac{M}{E I}\left(\frac{\partial M}{\partial P}\right) d x=\int_{0}^{4} \frac{\left(1849.17 x-200 x^{2}\right)(0.541 x) d x}{E I}+\int_{0}^{10} \frac{(389.5 x)(0.325 x) d x}{E I}$
$=\frac{1}{E I}\left[\left.\left(333.47 x^{3}-27.5 x^{4}\right)\right|_{0} ^{6}+\left.\left(42.15 x^{3}\right)\right|_{0} ^{10}\right]$

$$
=\frac{79.1 \mathrm{k} . \mathrm{ft}^{3}}{\mathrm{EI}} \rightarrow
$$

Ans.

*9-60. The frame is subjected to the load of 5 k . Determine the vertical displacement at C. Assume that the members are pin connected at A, C, and E, and fixed connected at the knee joints B and D. $E I$ is constant. Use the method of virtual work.

$\left(\Delta_{c}\right)_{v}=\int_{0}^{L} \frac{m M}{E I} d x=2\left[\int_{0}^{10} \frac{(0.25 x)(1.25 x) d x}{E I}+\int_{0}^{10} \frac{(-0.25 x)(-1.25 x) d x}{E I}\right]$

$$
=\frac{1.25\left(10^{3}\right)}{3 E I}=\frac{4.17 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \downarrow
$$

Ans.

9-61. Solve Prob. 9-60 using Castigliano's theorem.

Set $P=5 \mathrm{k}$.

$$
\begin{aligned}
\left(\Delta_{c}\right)_{v} & =\int_{0}^{L} \frac{M}{E I}\left(\frac{\partial M}{\partial P}\right) d x=2\left[\int_{0}^{10} \frac{(1.25 x)(0.25 x) d x}{E I}+\int_{0}^{10} \frac{(-1.25 x)(-0.25 x) d x}{E I}\right] \\
& =\frac{1.25\left(10^{3}\right)}{3 E I}=\frac{4.17 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \downarrow
\end{aligned}
$$

